The area of the region enclosed by the parabola $$(y-2)^2=x-1$$, the line $$x-2 y+4=0$$ and the positive coordinate axes is _________.
Let the area of the region $$\left\{(x, y): 0 \leq x \leq 3,0 \leq y \leq \min \left\{x^2+2,2 x+2\right\}\right\}$$ be A. Then $$12 \mathrm{~A}$$ is equal to __________.
The area (in sq. units) of the part of the circle $$x^2+y^2=169$$ which is below the line $$5 x-y=13$$ is $$\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$$, where $$\alpha, \beta$$ are coprime numbers. Then $$\alpha+\beta$$ is equal to __________.
If the points of intersection of two distinct conics $$x^2+y^2=4 b$$ and $$\frac{x^2}{16}+\frac{y^2}{b^2}=1$$ lie on the curve $$y^2=3 x^2$$, then $$3 \sqrt{3}$$ times the area of the rectangle formed by the intersection points is _________.