For real numbers a, b (a > b > 0), let
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {a^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \ge 1} \right\} = 30\pi $$
and
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {b^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \le 1} \right\} = 18\pi $$
Then, the value of (a $$-$$ b)2 is equal to ___________.
If the area of the region $$\left\{ {(x,y):{x^{{2 \over 3}}} + {y^{{2 \over 3}}} \le 1,\,x + y \ge 0,\,y \ge 0} \right\}$$ is A, then $${{256A} \over \pi }$$ is equal to __________.
$${A_1} = \left\{ {(x,y):|x| \le {y^2},|x| + 2y \le 8} \right\}$$ and
$${A_2} = \left\{ {(x,y):|x| + |y| \le k} \right\}$$. If 27 (Area A1) = 5 (Area A2), then k is equal to :
The area (in sq. units) of the region enclosed between the parabola y2 = 2x and the line x + y = 4 is __________.