$$Pt(s)|{H_2}(g)(1\,bar)|{H^ + }(aq)(1\,M)||{M^{3 + }}(aq),{M^ + }(aq)|Pt(s)$$
The $$\mathrm{E_{cell}}$$ for the given cell is 0.1115 V at 298 K when $${{\left[ {{M^ + }(aq)} \right]} \over {\left[ {{M^{3 + }}(aq)} \right]}} = {10^a}$$
The value of $$a$$ is ____________
Given : $$\mathrm{E_{{M^{3 + }}/{M^ + }}^\theta = 0.2}$$ V
$${{2.303RT} \over F} = 0.059V$$
Consider the cell
$$\mathrm{Pt(s)|{H_2}(g)\,(1\,atm)|{H^ + }\,(aq,[{H^ + }] = 1)||F{e^{3 + }}(aq),F{e^{2 + }}(aq)|Pt(s)}$$
Given $$\mathrm{E_{F{e^{3 + }}/F{e^{2 + }}}^o = 0.771\,V}$$ and $$\mathrm{E_{{H^ + }/1/2\,{H_2}}^o = 0\,V,\,T = 298\,K}$$
If the potential of the cell is 0.712 V, the ratio of concentration of Fe$$^{2+}$$ to Fe$$^{3+}$$ is _____________ (Nearest integer)
At 298 K, a 1 litre solution containing 10 mmol of $$\mathrm{C{r_2}O_7^{2 - }}$$ and 100 mmol of $$\mathrm{Cr^{3+}}$$ shows a pH of 3.0.
Given : $$\mathrm{C{r_2}O_7^{2 - } \to C{r^{3 + }}\,;\,E^\circ = 1.330}$$V
and $$\mathrm{{{2.303\,RT} \over F} = 0.059}$$ V
The potential for the half cell reaction is $$x\times10^{-3}$$ V. The value of $$x$$ is __________
For a cell, $$\mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(0.001 \,\mathrm{M}) \| \mathrm{Ag}^{+}(0.01 \,\mathrm{M})\right| \mathrm{Ag}(\mathrm{s})$$
the cell potential is found to be $$0.43 \mathrm{~V}$$ at $$298 \mathrm{~K}$$. The magnitude of standard electrode potential for $$\mathrm{Cu}^{2+} / \mathrm{Cu}$$ is _________ $$\times 10^{-2} \mathrm{~V}$$.
[Given : $$E_{A{g^ + }/Ag}^\Theta $$ = 0.80 V and $${{2.303RT} \over F}$$ = 0.06 V]