Following figure shows dependence of molar conductance of two electrolytes on concentration. $$\Lambda \mathop m\limits^o $$ is the limiting molar conductivity.
The number of $$\mathrm{\underline {incorrect} }$$ statement(s) from the following is ___________
(A) $$\Lambda \mathop m\limits^o $$ for electrolyte A is obtained by extrapolation
(B) For electrolyte B, $$\Lambda \mathop m\limits $$ vs $$\sqrt c$$ graph is a straight line with intercept equal to $$\Lambda \mathop m\limits^o $$
(C) At infinite dilution, the value of degree of dissociation approaches zero for electrolyte B.
(D) $$\Lambda \mathop m\limits^o $$ for any electrolyte A and B can be calculated using $$\lambda^\circ$$ for individual ions
$$Pt(s)|{H_2}(g)(1\,bar)|{H^ + }(aq)(1\,M)||{M^{3 + }}(aq),{M^ + }(aq)|Pt(s)$$
The $$\mathrm{E_{cell}}$$ for the given cell is 0.1115 V at 298 K when $${{\left[ {{M^ + }(aq)} \right]} \over {\left[ {{M^{3 + }}(aq)} \right]}} = {10^a}$$
The value of $$a$$ is ____________
Given : $$\mathrm{E_{{M^{3 + }}/{M^ + }}^\theta = 0.2}$$ V
$${{2.303RT} \over F} = 0.059V$$
Consider the cell
$$\mathrm{Pt(s)|{H_2}(g)\,(1\,atm)|{H^ + }\,(aq,[{H^ + }] = 1)||F{e^{3 + }}(aq),F{e^{2 + }}(aq)|Pt(s)}$$
Given $$\mathrm{E_{F{e^{3 + }}/F{e^{2 + }}}^o = 0.771\,V}$$ and $$\mathrm{E_{{H^ + }/1/2\,{H_2}}^o = 0\,V,\,T = 298\,K}$$
If the potential of the cell is 0.712 V, the ratio of concentration of Fe$$^{2+}$$ to Fe$$^{3+}$$ is _____________ (Nearest integer)
At 298 K, a 1 litre solution containing 10 mmol of $$\mathrm{C{r_2}O_7^{2 - }}$$ and 100 mmol of $$\mathrm{Cr^{3+}}$$ shows a pH of 3.0.
Given : $$\mathrm{C{r_2}O_7^{2 - } \to C{r^{3 + }}\,;\,E^\circ = 1.330}$$V
and $$\mathrm{{{2.303\,RT} \over F} = 0.059}$$ V
The potential for the half cell reaction is $$x\times10^{-3}$$ V. The value of $$x$$ is __________