1
JEE Main 2023 (Online) 10th April Morning Shift
Numerical
+4
-1

$$\mathrm{FeO_4^{2 - }\buildrel { + 2.2V} \over \longrightarrow F{e^{3 + }}\buildrel { + 0.70V} \over \longrightarrow F{e^{2 + }}\buildrel { - 0.45V} \over \longrightarrow F{e^0}}$$

$$E_{FeO_4^{2 - }/F{e^{2 + }}}^\theta$$ is $$x \times {10^{ - 3}}$$ V. The value of $$x$$ is _________

2
JEE Main 2023 (Online) 8th April Evening Shift
Numerical
+4
-1

The number of incorrect statements from the following is ___________.

A. The electrical work that a reaction can perform at constant pressure and temperature is equal to the reaction Gibbs energy.

B. $$\mathrm{E_{cell}^{\circ}}$$ cell is dependent on the pressure.

C. $$\frac{d E^{\theta} \text { cell }}{\mathrm{dT}}=\frac{\Delta_{\mathrm{r}} \mathrm{S}^{\theta}}{\mathrm{nF}}$$

D. A cell is operating reversibly if the cell potential is exactly balanced by an opposing source of potential difference.

3
JEE Main 2023 (Online) 6th April Evening Shift
Numerical
+4
-1

The standard reduction potentials at $$298 \mathrm{~K}$$ for the following half cells are given below:

$$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\theta}=0.97 \mathrm{~V}$$

$$\mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{V} \quad\quad\quad \mathrm{E}^{\theta}=-1.19 \mathrm{~V}$$

$$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \quad\quad\quad \mathrm{E}^{\theta}=-0.04 \mathrm{~V}$$

$$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \quad\quad\quad \mathrm{E}^{\theta}=0.80 \mathrm{~V}$$

$$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}) \quad\quad\quad \mathrm{E}^{\theta}=1.40 \mathrm{~V}$$

The number of metal(s) which will be oxidized by $$\mathrm{NO}_{3}^{-}$$ in aqueous solution is __________.

4
JEE Main 2023 (Online) 1st February Evening Shift
Numerical
+4
-1

$$1 \times 10^{-5} ~\mathrm{M} ~\mathrm{AgNO}_{3}$$ is added to $$1 \mathrm{~L}$$ of saturated solution of $$\mathrm{AgBr}$$. The conductivity of this solution at $$298 \mathrm{~K}$$ is _____________ $$\times 10^{-8} \mathrm{~S} \mathrm{~m}^{-1}$$.

[Given : $$\mathrm{K}_{\mathrm{SP}}(\mathrm{AgBr})=4.9 \times 10^{-13}$$ at $$298 \mathrm{~K}$$

\begin{aligned} & \lambda_{\mathrm{Ag}^{+}}^{0}=6 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\ & \lambda_{\mathrm{Br}^{-}}^{0}=8 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \\ & \left.\lambda_{\mathrm{NO}_{3}^{-}}^{0}=7 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\right] \end{aligned}