1
JEE Main 2024 (Online) 8th April Evening Shift
Numerical
+4
-1
Change Language

Let $$\mathrm{A}$$ be the region enclosed by the parabola $$y^2=2 x$$ and the line $$x=24$$. Then the maximum area of the rectangle inscribed in the region $$\mathrm{A}$$ is ________.

Your input ____
2
JEE Main 2024 (Online) 5th April Evening Shift
Numerical
+4
-1
Change Language

Let the maximum and minimum values of $$\left(\sqrt{8 x-x^2-12}-4\right)^2+(x-7)^2, x \in \mathbf{R}$$ be $$\mathrm{M}$$ and $$\mathrm{m}$$, respectively. Then $$\mathrm{M}^2-\mathrm{m}^2$$ is equal to _________.

Your input ____
3
JEE Main 2024 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Let $$f(x)=2^x-x^2, x \in \mathbb{R}$$. If $$m$$ and $$n$$ are respectively the number of points at which the curves $$y=f(x)$$ and $$y=f^{\prime}(x)$$ intersect the $$x$$-axis, then the value of $$\mathrm{m}+\mathrm{n}$$ is ___________.

Your input ____
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let for a differentiable function $f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right)$ is equal to ____________.
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12