1
JEE Main 2022 (Online) 27th July Evening Shift
Numerical
+4
-1
Change Language

A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is $$\tan ^{-1} \frac{3}{4}$$. Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is ______________.

Your input ____
2
JEE Main 2022 (Online) 27th July Morning Shift
Numerical
+4
-1
Out of Syllabus
Change Language

Let $$M$$ and $$N$$ be the number of points on the curve $$y^{5}-9 x y+2 x=0$$, where the tangents to the curve are parallel to $$x$$-axis and $$y$$-axis, respectively. Then the value of $$M+N$$ equals ___________.

Your input ____
3
JEE Main 2022 (Online) 26th July Morning Shift
Numerical
+4
-1
Change Language

Let the function $$f(x)=2 x^{2}-\log _{\mathrm{e}} x, x>0$$, be decreasing in $$(0, \mathrm{a})$$ and increasing in $$(\mathrm{a}, 4)$$. A tangent to the parabola $$y^{2}=4 a x$$ at a point $$\mathrm{P}$$ on it passes through the point $$(8 \mathrm{a}, 8 \mathrm{a}-1)$$ but does not pass through the point $$\left(-\frac{1}{a}, 0\right)$$. If the equation of the normal at $$P$$ is : $$\frac{x}{\alpha}+\frac{y}{\beta}=1$$, then $$\alpha+\beta$$ is equal to ________________.

Your input ____
4
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Change Language

The sum of the maximum and minimum values of the function $$f(x)=|5 x-7|+\left[x^{2}+2 x\right]$$ in the interval $$\left[\frac{5}{4}, 2\right]$$, where $$[t]$$ is the greatest integer $$\leq t$$, is ______________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12