Let $$m_{1}$$ and $$m_{2}$$ be the slopes of the tangents drawn from the point $$\mathrm{P}(4,1)$$ to the hyperbola $$H: \frac{y^{2}}{25}-\frac{x^{2}}{16}=1$$. If $$\mathrm{Q}$$ is the point from which the tangents drawn to $$\mathrm{H}$$ have slopes $$\left|m_{1}\right|$$ and $$\left|m_{2}\right|$$ and they make positive intercepts $$\alpha$$ and $$\beta$$ on the $$x$$-axis, then $$\frac{(P Q)^{2}}{\alpha \beta}$$ is equal to __________.

Let $$\mathrm{H}_{\mathrm{n}}: \frac{x^{2}}{1+n}-\frac{y^{2}}{3+n}=1, n \in N$$. Let $$\mathrm{k}$$ be the smallest even value of $$\mathrm{n}$$ such that the eccentricity of $$\mathrm{H}_{\mathrm{k}}$$ is a rational number. If $$l$$ is the length of the latus rectum of $$\mathrm{H}_{\mathrm{k}}$$, then $$21 l$$ is equal to _________.

Let the eccentricity of an ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ is reciprocal to that of the hyperbola $$2 x^{2}-2 y^{2}=1$$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is ___________.

The vertices of a hyperbola H are ($$\pm$$ 6, 0) and its eccentricity is $${{\sqrt 5 } \over 2}$$. Let N be the normal to H at a point in the first quadrant and parallel to the line $$\sqrt 2 x + y = 2\sqrt 2 $$. If d is the length of the line segment of N between H and the y-axis then d$$^2$$ is equal to _____________.