An ellipse $$E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ passes through the vertices of the hyperbola $$H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$$. Let the major and minor axes of the ellipse $$E$$ coincide with the transverse and conjugate axes of the hyperbola $$H$$, respectively. Let the product of the eccentricities of $$E$$ and $$H$$ be $$\frac{1}{2}$$. If $$l$$ is the length of the latus rectum of the ellipse $$E$$, then the value of $$113 l$$ is equal to _____________.

If the length of the latus rectum of the ellipse $$x^{2}+4 y^{2}+2 x+8 y-\lambda=0$$ is 4 , and $$l$$ is the length of its major axis, then $$\lambda+l$$ is equal to ____________.

Let the equation of two diameters of a circle $$x^{2}+y^{2}-2 x+2 f y+1=0$$ be $$2 p x-y=1$$ and $$2 x+p y=4 p$$. Then the slope m $$ \in $$ $$(0, \infty)$$ of the tangent to the hyperbola $$3 x^{2}-y^{2}=3$$ passing through the centre of the circle is equal to _______________.

The sum of diameters of the circles that touch (i) the parabola $$75 x^{2}=64(5 y-3)$$ at the point $$\left(\frac{8}{5}, \frac{6}{5}\right)$$ and (ii) the $$y$$-axis, is equal to ______________.