If $\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \mathrm{~d} x=\frac{1}{\mathrm{~m}}\left(\left(\sqrt{1+x^2}+x\right)^{\mathrm{n}}\left(\mathrm{n} \sqrt{1+x^2}-x\right)\right)+\mathrm{C}$ where C is the constant of integration and $\mathrm{m}, \mathrm{n} \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}$ is equal to _________ .
If $\int \frac{2 x^2+5 x+9}{\sqrt{x^2+x+1}} \mathrm{~d} x=x \sqrt{x^2+x+1}+\alpha \sqrt{x^2+x+1}+\beta \log _{\mathrm{e}}\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right|+\mathrm{C}$, where $C$ is the constant of integration, then $\alpha+2 \beta$ is equal to __________ .
If $$\int \frac{1}{\sqrt[5]{(x-1)^4(x+3)^6}} \mathrm{~d} x=\mathrm{A}\left(\frac{\alpha x-1}{\beta x+3}\right)^B+\mathrm{C}$$, where $$\mathrm{C}$$ is the constant of integration, then the value of $$\alpha+\beta+20 \mathrm{AB}$$ is _________.
If $$\int \operatorname{cosec}^5 x d x=\alpha \cot x \operatorname{cosec} x\left(\operatorname{cosec}^2 x+\frac{3}{2}\right)+\beta \log _x\left|\tan \frac{x}{2}\right|+\mathrm{C}$$ where $$\alpha, \beta \in \mathbb{R}$$ and $$\mathrm{C}$$ is the constant of integration, then the value of $$8(\alpha+\beta)$$ equals _________.