1
JEE Main 2021 (Online) 18th March Morning Shift
Numerical
+4
-1
If $$f(x) = \int {{{5{x^8} + 7{x^6}} \over {{{({x^2} + 1 + 2{x^7})}^2}}}dx,(x \ge 0),f(0) = 0} $$ and $$f(1) = {1 \over K}$$, then the value of K is
Your input ____
2
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
For real numbers $$\alpha$$, $$\beta$$, $$\gamma$$ and $$\delta $$, if
$$\int {{{({x^2} - 1) + {{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \over {({x^4} + 3{x^2} + 1){{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)}}dx} $$
$$ = \alpha {\log _e}\left( {{{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \right) + \beta {\tan ^{ - 1}}\left( {{{\gamma ({x^2} + 1)} \over x}} \right) + \delta {\tan ^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right) + C$$
where C is an arbitrary constant, then the value of 10($$\alpha$$ + $$\beta$$$$\gamma$$ + $$\delta$$) is equal to ______________.
$$\int {{{({x^2} - 1) + {{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \over {({x^4} + 3{x^2} + 1){{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)}}dx} $$
$$ = \alpha {\log _e}\left( {{{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \right) + \beta {\tan ^{ - 1}}\left( {{{\gamma ({x^2} + 1)} \over x}} \right) + \delta {\tan ^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right) + C$$
where C is an arbitrary constant, then the value of 10($$\alpha$$ + $$\beta$$$$\gamma$$ + $$\delta$$) is equal to ______________.
Your input ____
Questions Asked from Indefinite Integrals (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Main 2023 (Online) 30th January Evening Shift (1) JEE Main 2021 (Online) 31st August Evening Shift (1) JEE Main 2021 (Online) 27th August Evening Shift (1) JEE Main 2021 (Online) 27th August Morning Shift (1) JEE Main 2021 (Online) 18th March Morning Shift (1) JEE Main 2021 (Online) 16th March Evening Shift (1)