 JEE Mains Previous Years Questions with Solutions

4.5
star star star star star
1

AIEEE 2006

Assuming the Sun to be a spherical body of radius $R$ at a temperature of $TK$, evaluate the total radiant powered incident of Earth at a distance $r$ from the Sun

Where r0 is the radius of the Earth and $\sigma$ is Stefan's constant.

A
$4\pi r_0^2{R^2}\sigma {{{T^4}} \over {{r^2}}}$
B
$\pi r_0^2{R^2}\sigma {{{T^4}} \over {{r^2}}}$
C
$r_0^2{R^2}\sigma {{{T^4}} \over {4\pi {r^2}}}$
D
${R^2}\sigma {{{T^4}} \over {{r^2}}}$

Explanation

Total power radiated by Sun $= \sigma {T^4} \times 4\pi {R^2}$

The intensity of power at earth's surface $= {{\sigma {T^4} \times 4\pi {R^2}} \over {4\pi {r^2}}}$

Total power received by Earth $= {{\sigma {T^4}{R^2}} \over {{r^2}}}\left( {\pi r_0^2} \right)$
2

AIEEE 2006

The work of $146$ $kJ$ is performed in order to compress one kilo mole of gas adiabatically and in this process the temperature of the gas increases by ${7^ \circ }C.$ The gas is $\left( {R = 8.3J\,\,mo{l^{ - 1}}\,{K^{ - 1}}} \right)$
A
diatomic
B
triatomic
C
a mixture of monoatomic and diatomic
D
monoatomic

Explanation

$W = {{nR\Delta T} \over {1 - \gamma }} \Rightarrow - 146000$
$= {{1000 \times 8.3 \times 7} \over {1 - \gamma }}$
or $1 - \gamma = - {{58.1} \over {146}} \Rightarrow \gamma$
$= 1 + {{58.1} \over {146}} = 1.4$
Hence the gas is diatomic.
3

AIEEE 2005

The temperature-entropy diagram of a reversible engine cycle is given in the figure. Its efficiency is A
${1 \over 4}$
B
${1 \over 2}$
C
${2 \over 3}$
D
${1 \over 3}$

Explanation ${Q_1} = {T_0}{S_0} + {1 \over 2}{T_0}{S_0} = {3 \over 2}{T_0}{S_0}$
${Q_2} = {T_0}\left( {2{S_0} - {S_0}} \right)$ $= {T_0}{S_0}$
and ${Q_3} = 0$
$\eta = 1 - {{{Q_2}} \over {{Q_1}}} = 1 - {{{T_0}{S_0}} \over {{3 \over 2}{T_0}{S_0}}} = {1 \over 3}$
4

AIEEE 2005

The figure shows a system of two concentric spheres of radii ${r_1}$ and ${r_2}$ are kept at temperatures ${T_1}$ and ${T_2}$, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is proportional to A
$In\left( {{{{r_2}} \over {{r_1}}}} \right)$
B
${{\left( {{r_2} - {r_1}} \right)} \over {\left( {{r_1}{r_2}} \right)}}$
C
${\left( {{r_2} - {r_1}} \right)}$
D
${{{r_1}{r_2}} \over {\left( {{r_2} - {r_1}} \right)}}$

Explanation Consider a shell of thickness $(dr)$ and of radius $(r)$ and the temperature of inner and outer surfaces of this shell be $T,(T-dT)$
$H = {{KA\left[ {\left( {T - dT} \right) - T} \right]} \over {dr}} = {{ - KAdT} \over {dr}}$
$H = - 4\pi K{r^2}{{dT} \over {dr}}$ ( as $A = 4\pi {r^2}$ )
Then, $\left( H \right)\int\limits_{{r_1}}^{{r^2}} {{1 \over {{r^2}}}} dr = - 4\pi K\int\limits_{{T_1}}^{{T_2}} {dT}$
$H\left[ {{1 \over {{r_1}}} - {1 \over {{r_2}}}} \right] = - 4\pi K\left[ {{T_2} - {T_1}} \right]$
or $H = {{ - 4\pi K{r_1}{r_2}\left( {{T_2} - {T_1}} \right)} \over {\left( {{r_2} - {r_1}} \right)}}$