1
JEE Main 2025 (Online) 3rd April Morning Shift
Numerical
+4
-1

Given :

$$ \begin{aligned} & \left.\Delta \mathrm{H}^{\ominus}{ }_{\text {sub }}[\mathrm{C} \text { (graphite })\right]=710 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}-\mathrm{H}} \mathrm{H}^{\ominus}=414 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{H}-\mathrm{H}} \mathrm{H}^{\ominus}=436 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta_{\mathrm{C}}=\mathrm{C} \mathrm{H}^{\ominus}=611 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$

The $\Delta \mathrm{H}_{\mathrm{f}} \ominus$ for $\mathrm{CH}_2=\mathrm{CH}_2$ is_________ $\mathrm{kJ} \mathrm{mol}^{-1}$ (nearest integer value)

Your input ____
2
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
$$ \text { If the domain of the function } f(x)=\log _e\left(\frac{2 x-3}{5+4 x}\right)+\sin ^{-1}\left(\frac{4+3 x}{2-x}\right) \text { is }[\alpha, \beta) \text {, then } \alpha^2+4 \beta \text { is equal to } $$
A
4
B
3
C
7
D
5
3
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Let $a_1, a_2, a_3, \ldots$. be a G.P. of increasing positive numbers. If $a_3 a_5=729$ and $a_2+a_4=\frac{111}{4}$, then $24\left(a_1+a_2+a_3\right)$ is equal to
A
128
B
129
C
131
D
130
4
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
The sum $1+3+11+25+45+71+\ldots$ upto 20 terms, is equal to
A
7240
B
8124
C
7130
D
6982
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12