$$ \text { Let } f(x)=\int x^3 \sqrt{3-x^2} d x \text {. If } 5 f(\sqrt{2})=-4 \text {, then } f(1) \text { is equal to } $$
Let the domain of the function $f(x)=\log _2 \log _4 \log _6\left(3+4 x-x^2\right)$ be $(a, b)$. If $\int_0^{b-a}\left[x^2\right] d x=p-\sqrt{q}-\sqrt{r}, p, q, r \in \mathbb{N}, \operatorname{gcd}(p, q, r)=1$, where $[\cdot]$ is the greatest integer function, then $p+q+r$ is equal to
Let $\alpha$ and $\beta$ be the roots of $x^2+\sqrt{3} x-16=0$, and $\gamma$ and $\delta$ be the roots of $x^2+3 x-1=0$. If $P_n=$ $\alpha^n+\beta^n$ and $Q_n=\gamma^n+\hat{o}^n$, then $\frac{P_{25}+\sqrt{3} P_{24}}{2 P_{23}}+\frac{Q_{25}-Q_{23}}{Q_{24}}$ is equal to
Let a line passing through the point $(4,1,0)$ intersect the line $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ at the point $A(\alpha, \beta, \gamma)$ and the line $\mathrm{L}_2: x-6=y=-z+4$ at the point $B(a, b, c)$. Then $\left|\begin{array}{lll}1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c\end{array}\right|$ is equal to