1
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
The radius of the smallest circle which touches the parabolas $y=x^2+2$ and $x=y^2+2$ is
A
$\frac{7 \sqrt{2}}{16}$
B
$\frac{7 \sqrt{2}}{8}$
C
$\frac{7 \sqrt{2}}{2}$
D
$\frac{7 \sqrt{2}}{4}$
2
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

$$ \text { Let } f(x)=\int x^3 \sqrt{3-x^2} d x \text {. If } 5 f(\sqrt{2})=-4 \text {, then } f(1) \text { is equal to } $$

A
$-\frac{6 \sqrt{2}}{5}$
B
$-\frac{8 \sqrt{2}}{5}$
C
$-\frac{2 \sqrt{2}}{5}$
D
$-\frac{4 \sqrt{2}}{5}$
3
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the domain of the function $f(x)=\log _2 \log _4 \log _6\left(3+4 x-x^2\right)$ be $(a, b)$. If $\int_0^{b-a}\left[x^2\right] d x=p-\sqrt{q}-\sqrt{r}, p, q, r \in \mathbb{N}, \operatorname{gcd}(p, q, r)=1$, where $[\cdot]$ is the greatest integer function, then $p+q+r$ is equal to

A
10
B
11
C
9
D
8
4
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $\alpha$ and $\beta$ be the roots of $x^2+\sqrt{3} x-16=0$, and $\gamma$ and $\delta$ be the roots of $x^2+3 x-1=0$. If $P_n=$ $\alpha^n+\beta^n$ and $Q_n=\gamma^n+\hat{o}^n$, then $\frac{P_{25}+\sqrt{3} P_{24}}{2 P_{23}}+\frac{Q_{25}-Q_{23}}{Q_{24}}$ is equal to

A
4
B
3
C
5
D
7
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12