Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\lambda \hat{j}+\mu \hat{k}$ and $\hat{d}$ be a unit vector such that $\vec{a} \times \hat{d}=\vec{b} \times \hat{d}$ and $\vec{c} \cdot \hat{d}=1$. If $\vec{c}$ is perpendicular to $\vec{a}$, then $|3 \lambda \hat{d}+\mu \vec{c}|^2$ is equal to________
Let the product of the focal distances of the point $\mathbf{P}(4,2 \sqrt{3})$ on the hyperbola $\mathrm{H}: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be 32 . Let the length of the conjugate axis of H be $p$ and the length of its latus rectum be $q$. Then $p^2+q^2$ is equal to__________
The area of the region bounded by the curve $y=\max \{|x|, x|x-2|\}$, the $x$-axis and the lines $x=-2$ and $x=4$ is equal to__________
If the number of seven-digit numbers, such that the sum of their digits is even, is $m \cdot n \cdot 10^n ; m, n \in\{1,2,3, \ldots, 9\}$, then $m+n$ is equal to__________