1
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$ \text { If } y(x)=\left|\begin{array}{ccc} \sin x & \cos x & \sin x+\cos x+1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{array}\right|, x \in \mathbb{R} \text {, then } \frac{d^2 y}{d x^2}+y \text { is equal to } $$
A
28
B
27
C
-1
D
1
2
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A line passes through the origin and makes equal angles with the positive coordinate axes. It intersects the lines $\mathrm{L}_1: 2 x+y+6=0$ and $\mathrm{L}_2: 4 x+2 y-p=0, p>0$, at the points A and B , respectively. If $A B=\frac{9}{\sqrt{2}}$ and the foot of the perpendicular from the point $A$ on the line $L_2$ is $M$, then $\frac{A M}{B M}$ is equal to

A
5
B
3
C
2
D
4
3
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A$ be a matrix of order $3 \times 3$ and $|A|=5$. If $|2 \operatorname{adj}(3 A \operatorname{adj}(2 A))|=2^\alpha \cdot 3^\beta \cdot 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha+\beta+\gamma$ is equal to

A
26
B
27
C
25
D
28
4
JEE Main 2025 (Online) 3rd April Morning Shift
Numerical
+4
-1
Change Language

All five letter words are made using all the letters A, B, C, D, E and arranged as in an English dictionary with serial numbers. Let the word at serial number $n$ be denoted by $\mathrm{W}_{\mathrm{n}}$. Let the probability $\mathrm{P}\left(\mathrm{W}_{\mathrm{n}}\right)$ of choosing the word $\mathrm{W}_{\mathrm{n}}$ satisfy $\mathrm{P}\left(\mathrm{W}_{\mathrm{n}}\right)=2 \mathrm{P}\left(\mathrm{W}_{\mathrm{n}-1}\right), \mathrm{n}>1$.

If $\mathrm{P}(\mathrm{CDBEA})=\frac{2^\alpha}{2^\beta-1}, \alpha, \beta \in \mathbb{N}$, then $\alpha+\beta$ is equal to :____________

Your input ____
JEE Main Papers
2023
2021
EXAM MAP