1
JEE Main 2025 (Online) 29th January Morning Shift
Numerical
+4
-1

Let [.] be the greatest integer less than or equal to t. Then the least value of p ∈ N for which

$ \lim\limits_{x \to 0^+} \left( x \left[ \frac{1}{x} \right] + \left[ \frac{2}{x} \right] + \ldots + \left[ \frac{p}{x} \right] \right) - x^2 \left( \left[ \frac{1}{x^2} \right] + \left[ \frac{2}{x^2} \right] + \ldots + \left[ \frac{9^2}{x^2} \right] \right) \geq 1 $ is equal to _______.

Your input ____
2
JEE Main 2025 (Online) 29th January Morning Shift
Numerical
+4
-1

Let $S=\left\{m \in \mathbf{Z}: A^{m^2}+A^m=3 I-A^{-6}\right\}$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. Then $n(S)$ is equal to __________.

Your input ____
3
JEE Main 2025 (Online) 29th January Morning Shift
Numerical
+4
-1

Let S = $ \left\{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} [2x + 1] \right\} $. Then $ \sum\limits_{x \in S} (2x - 1)^2 $ is equal to _______.

Your input ____
4
JEE Main 2025 (Online) 29th January Morning Shift
Numerical
+4
-1

Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a twice differentiable function. If for some $a\ne 0, \int\limits_0^1 f(\lambda x) \mathrm{d} \mathrm{\lambda}=a f(x), f(1)=1$ and $f(16)=\frac{1}{8}$, then $16-f^{\prime}\left(\frac{1}{16}\right)$ is equal to __________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12