1
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The least value of n for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7}+\sqrt[12]{11})^n$ is 183, is :

A

2184

B

2172

C

2196

D

2148

2
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $\lim \limits_{n \rightarrow \infty}\left(\sum\limits_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!}\right)$ is :

A

5/3

B

2

C

4/3

D

7/3

3
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let y = y(x) be the solution of the differential equation :

$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :

A

$\frac{2}{\log_{e}(3)−\log_{e}(4)}$

B

$-\frac{1}{\log_{e}(4)}$

C

$\frac{1}{\log_{e}(4)−\log_{e}(3)}$

D

$\frac{1}{\log_{e}(3)−\log_{e}(4)}$

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ |z_1 − 8−2i| \leq 1 $ and $ |z_2−2+6i| \leq 2 $, $ z_1, z_2 \in \mathbb{C} $. Then the minimum value of $ |z_1 − z_2| $ is :

A

3

B

10

C

7

D

13

JEE Main Papers
2023
2021
EXAM MAP