1
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \ \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k} $ and $ \vec{c} $ be a vector such that $ \vec{a} \times \vec{c} = \vec{a} \times \vec{b} = \vec{c} \times \vec{b} $ and $ (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168 $. Then the maximum value of $|\vec{c}|^2$ is :

A

77

B

154

C

308

D

462

2
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the line x+y=1 meet the circle $x^2+y^2=4$ at the points A and B. If the line perpendicular to AB and passing through the mid-point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ABCD is equal to :

A

$ \sqrt{14} $

B

$ 3\sqrt{7} $

C

$ 2\sqrt{14} $

D

$ 5\sqrt{7} $

3
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Define a relation R on the interval $ \left[0, \frac{\pi}{2}\right) $ by $ x $ R $ y $ if and only if $ \sec^2x - \tan^2y = 1 $. Then R is :

A

both reflexive and symmetric but not transitive

B

both reflexive and transitive but not symmetric

C

reflexive but neither symmetric not transitive

D

an equivalence relation

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let M and m respectively be the maximum and the minimum values of

$f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$

Then $ M^4 - m^4 $ is equal to :

A

1280

B

1040

C

1215

D

1295

JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12