1
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The number of solutions of the equation

$ \left( \frac{9}{x} - \frac{9}{\sqrt{x}} + 2 \right) \left( \frac{2}{x} - \frac{7}{\sqrt{x}} + 3 \right) = 0 $ is :

A

3

B

2

C

1

D

4

2
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The least value of n for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7}+\sqrt[12]{11})^n$ is 183, is :

A

2184

B

2172

C

2196

D

2148

3
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The value of $\lim \limits_{n \rightarrow \infty}\left(\sum\limits_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!}\right)$ is :

A

5/3

B

2

C

4/3

D

7/3

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let y = y(x) be the solution of the differential equation :

$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :

A

$\frac{2}{\log_{e}(3)−\log_{e}(4)}$

B

$-\frac{1}{\log_{e}(4)}$

C

$\frac{1}{\log_{e}(4)−\log_{e}(3)}$

D

$\frac{1}{\log_{e}(3)−\log_{e}(4)}$

JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12