Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is :
Let the ellipse $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$ and $E_2: \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$, $A < B$ have same eccentricity $\frac{1}{\sqrt{3}}$. Let the product of their lengths of latus rectums be $\frac{32}{\sqrt{3}}$ and the distance between the foci of $E_1$ be 4. If $E_1$ and $E_2$ meet at A, B, C and D, then the area of the quadrilateral ABCD equals :
Two parabolas have the same focus (4, 3) and their directrices are the x-axis and the y-axis, respectively. If these parabolas intersect at the points A and B, then (AB)2 is equal to :
Let ΔABC be a triangle formed by the lines 7x – 6y + 3 = 0, x + 2y – 31 = 0 and 9x – 2y – 19 = 0. Let the point (h, k) be the image of the centroid of ΔABC in the line 3x + 6y – 53 = 0. Then h2 + k2 + hk is equal to :