The shortest distance between the lines $$\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$$ and $$\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$$ is
Let $$y=y(x)$$ be the solution of the differential equation $$\left(2 x \log _e x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _e x, x>0$$ and $$y\left(e^{-1}\right)=0$$. Then, $$y(e)$$ is equal to
Let $$\alpha, \beta$$ be the distinct roots of the equation $$x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$$ and $$a_n=\alpha^n+\beta^n$$. Then the minimum value of $$\frac{a_{2023}+a_{2025}}{a_{2024}}$$ is
For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is