Let a conic $$C$$ pass through the point $$(4,-2)$$ and $$P(x, y), x \geq 3$$, be any point on $$C$$. Let the slope of the line touching the conic $$C$$ only at a single point $$P$$ be half the slope of the line joining the points $$P$$ and $$(3,-5)$$. If the focal distance of the point $$(7,1)$$ on $$C$$ is $$d$$, then $$12 d$$ equals ________.
If the second, third and fourth terms in the expansion of $$(x+y)^n$$ are 135, 30 and $$\frac{10}{3}$$, respectively, then $$6\left(n^3+x^2+y\right)$$ is equal to __________.
Let $$\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$$. If $$x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$$ for some $$x, y, z \in \mathbb{R}, x y z \neq 0$$, then $$6 \alpha+4 \beta+\gamma$$ is equal to _________.
Let $$P$$ be the point $$(10,-2,-1)$$ and $$Q$$ be the foot of the perpendicular drawn from the point $$R(1,7,6)$$ on the line passing through the points $$(2,-5,11)$$ and $$(-6,7,-5)$$. Then the length of the line segment $$P Q$$ is equal to _________.