1
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha, \beta$$ be the distinct roots of the equation $$x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$$ and $$a_n=\alpha^n+\beta^n$$. Then the minimum value of $$\frac{a_{2023}+a_{2025}}{a_{2024}}$$ is

A
$$-1 / 2$$
B
$$-1 / 4$$
C
$$1 / 4$$
D
$$1 / 2$$
2
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is

A
$$4 \alpha+2 \beta$$
B
0
C
$$2 n$$
D
$$2 \alpha+4 \beta$$
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to

A
$$\frac{5}{2}+\frac{\pi}{8}$$
B
$$\frac{3}{8}+\frac{\pi}{4}$$
C
$$\frac{3}{4}+\frac{\pi}{8}$$
D
$$\frac{3}{2}+\frac{\pi}{4}$$
4
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\int_\limits0^{\pi / 4} \frac{\cos ^2 x \sin ^2 x}{\left(\cos ^3 x+\sin ^3 x\right)^2} d x \text { is equal to }$$

A
1/9
B
1/6
C
1/3
D
1/12
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12