Let the first term of a series be $$T_1=6$$ and its $$r^{\text {th }}$$ term $$T_r=3 T_{r-1}+6^r, r=2,3$$, ............ $$n$$. If the sum of the first $$n$$ terms of this series is $$\frac{1}{5}\left(n^2-12 n+39\right)\left(4 \cdot 6^n-5 \cdot 3^n+1\right)$$, then $$n$$ is equal to ___________.
For $$n \in \mathrm{N}$$, if $$\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{-1} n=\frac{\pi}{4}$$, then $$n$$ is equal to ________.
Let $$r_k=\frac{\int_0^1\left(1-x^7\right)^k d x}{\int_0^1\left(1-x^7\right)^{k+1} d x}, k \in \mathbb{N}$$. Then the value of $$\sum_\limits{k=1}^{10} \frac{1}{7\left(r_k-1\right)}$$ is equal to _________.
Let $$\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$$ and a vector $$\vec{c}$$ be such that $$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\hat{i}+8 \hat{j}+13 \hat{k}$$. If $$\vec{a} \cdot \vec{c}=13$$, then $$(24-\vec{b} \cdot \vec{c})$$ is equal to _______.