A body projected vertically upwards with a certain speed from the top of a tower reaches the ground in $$t_1$$. If it is projected vertically downwards from the same point with the same speed, it reaches the ground in $$t_2$$. Time required to reach the ground, if it is dropped from the top of the tower, is :
Given below are two statements:
Statement (I) : Dimensions of specific heat is $$[\mathrm{L}^2 \mathrm{~T}^{-2} \mathrm{~K}^{-1}]$$.
Statement (II) : Dimensions of gas constant is $$[\mathrm{M} \mathrm{L}^2 \mathrm{~T}^{-1} \mathrm{~K}^{-1}]$$.
In the light of the above statements, choose the most appropriate answer from the options given below.
A body of weight $$200 \mathrm{~N}$$ is suspended from a tree branch through a chain of mass $$10 \mathrm{~kg}$$. The branch pulls the chain by a force equal to (if $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$$) :
The number of electrons flowing per second in the filament of a $$110 \mathrm{~W}$$ bulb operating at $$220 \mathrm{~V}$$ is : (Given $$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$$)