If $$A$$ is a square matrix of order 3 such that $$\operatorname{det}(A)=3$$ and $$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$$, then $$\mathrm{m}+2 \mathrm{n}$$ is equal to :
If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is :
Let $$\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=((\vec{a} \times(\hat{i}+\hat{j})) \times \hat{i}) \times \hat{i}$$. Then the square of the projection of $$\vec{a}$$ on $$\vec{b}$$ is:
Let $$\overrightarrow{\mathrm{a}}=6 \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+\hat{j}$$. If $$\overrightarrow{\mathrm{c}}$$ is a is vector such that $$|\overrightarrow{\mathrm{c}}| \geq 6, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=6|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\vec{a} \times \vec{b}$$ and $$\vec{c}$$ is $$60^{\circ}$$, then $$|(\vec{a} \times \vec{b}) \times \vec{c}|$$ is equal to: