$$\lim _\limits{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\cdots+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\cdots \cdots+n^3\right)-\left(1^2+2^2+\cdots \cdots+n^2\right)}$$ is equal to :
If $$A$$ is a square matrix of order 3 such that $$\operatorname{det}(A)=3$$ and $$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$$, then $$\mathrm{m}+2 \mathrm{n}$$ is equal to :
If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters are posted to exactly two addresses is :
Let $$\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=((\vec{a} \times(\hat{i}+\hat{j})) \times \hat{i}) \times \hat{i}$$. Then the square of the projection of $$\vec{a}$$ on $$\vec{b}$$ is: