1
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the area of the region $$\left\{(x, y): \frac{\mathrm{a}}{x^2} \leq y \leq \frac{1}{x}, 1 \leq x \leq 2,0<\mathrm{a}<1\right\}$$ is $$\left(\log _{\mathrm{e}} 2\right)-\frac{1}{7}$$ then the value of $$7 \mathrm{a}-3$$ is equal to :

A
1
B
0
C
2
D
$$-$$1
2
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{P}(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{Q}(3,-3,1)$$ in the line $$\frac{x-0}{1}=\frac{y-3}{1}=\frac{z-1}{-1}$$ and $$\mathrm{R}$$ be the point $$(2,5,-1)$$. If the area of the triangle $$\mathrm{PQR}$$ is $$\lambda$$ and $$\lambda^2=14 \mathrm{~K}$$, then $$\mathrm{K}$$ is equal to :

A
18
B
81
C
72
D
36
3
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$A B C$$ be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle $$A B C$$ and the same process is repeated infinitely many times. If $$\mathrm{P}$$ is the sum of perimeters and $$Q$$ is be the sum of areas of all the triangles formed in this process, then :

A
$$\mathrm{P}^2=72 \sqrt{3} \mathrm{Q}$$
B
$$\mathrm{P}^2=36 \sqrt{3} \mathrm{Q}$$
C
$$\mathrm{P}=36 \sqrt{3} \mathrm{Q}^2$$
D
$$\mathrm{P}^2=6 \sqrt{3} \mathrm{Q}$$
4
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Suppose the solution of the differential equation $$\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)}$$ represents a circle passing through origin. Then the radius of this circle is :

A
$$\sqrt{17}$$
B
2
C
$$\frac{\sqrt{17}}{2}$$
D
$$\frac{1}{2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12