Number of molecules/species from the following having one unpaired electron is ________.
$$\mathrm{O}_2, \mathrm{O}_2^{-1}, \mathrm{NO}, \mathrm{CN}^{-1}, \mathrm{O}_2^{2-}$$
Consider the following reaction
$$\mathrm{MnO}_2+\mathrm{KOH}+\mathrm{O}_2 \rightarrow \mathrm{A}+\mathrm{H}_2 \mathrm{O} \text {. }$$
Product '$$\mathrm{A}$$' in neutral or acidic medium disproportionate to give products '$$\mathrm{B}$$' and '$$\mathrm{C}$$' along with water. The sum of spin-only magnetic moment values of $$\mathrm{B}$$ and $$\mathrm{C}$$ is ________ BM. (nearest integer) (Given atomic number of $$\mathrm{Mn}$$ is 25)
$$\text { Let } f(x)=\left\{\begin{array}{lr} -2, & -2 \leq x \leq 0 \\ x-2, & 0< x \leq 2 \end{array} \text { and } \mathrm{h}(x)=f(|x|)+|f(x)| \text {. Then } \int_\limits{-2}^2 \mathrm{~h}(x) \mathrm{d} x\right. \text { is equal to: }$$
One of the points of intersection of the curves $$y=1+3 x-2 x^2$$ and $$y=\frac{1}{x}$$ is $$\left(\frac{1}{2}, 2\right)$$. Let the area of the region enclosed by these curves be $$\frac{1}{24}(l \sqrt{5}+\mathrm{m})-\mathrm{n} \log _{\mathrm{e}}(1+\sqrt{5})$$, where $$l, \mathrm{~m}, \mathrm{n} \in \mathbf{N}$$. Then $$l+\mathrm{m}+\mathrm{n}$$ is equal to