Let the first three terms 2, p and q, with $$q \neq 2$$, of a G.P. be respectively the $$7^{\text {th }}, 8^{\text {th }}$$ and $$13^{\text {th }}$$ terms of an A.P. If the $$5^{\text {th }}$$ term of the G.P. is the $$n^{\text {th }}$$ term of the A.P., then $n$ is equal to:
The sum of all rational terms in the expansion of $$\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$$ is equal to :
If 2 and 6 are the roots of the equation $$a x^2+b x+1=0$$, then the quadratic equation, whose roots are $$\frac{1}{2 a+b}$$ and $$\frac{1}{6 a+b}$$, is :
Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :