The sum of all rational terms in the expansion of $$\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$$ is equal to :
If 2 and 6 are the roots of the equation $$a x^2+b x+1=0$$, then the quadratic equation, whose roots are $$\frac{1}{2 a+b}$$ and $$\frac{1}{6 a+b}$$, is :
Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :
If the system of equations
$$\begin{aligned} & x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\ & x+(\cos \alpha) y+(\sin \alpha) z=0 \\ & x+(\sin \alpha) y-(\cos \alpha) z=0 \end{aligned}$$
has a non-trivial solution, then $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ is equal to :