1
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :

A
217
B
182
C
201
D
195
2
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the system of equations

$$\begin{aligned} & x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\ & x+(\cos \alpha) y+(\sin \alpha) z=0 \\ & x+(\sin \alpha) y-(\cos \alpha) z=0 \end{aligned}$$

has a non-trivial solution, then $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ is equal to :

A
$$\frac{5 \pi}{24}$$
B
$$\frac{11 \pi}{24}$$
C
$$\frac{7 \pi}{24}$$
D
$$\frac{3 \pi}{4}$$
3
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha$$ and $$\beta$$ be the sum and the product of all the non-zero solutions of the equation $$(\bar{z})^2+|z|=0, z \in C$$. Then $$4(\alpha^2+\beta^2)$$ is equal to :

A
4
B
2
C
6
D
8
4
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbf{R} \rightarrow \mathbf{R}$$ be a function given by

$$f(x)= \begin{cases}\frac{1-\cos 2 x}{x^2}, & x < 0 \\ \alpha, & x=0, \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0\end{cases}$$

where $$\alpha, \beta \in \mathbf{R}$$. If $$f$$ is continuous at $$x=0$$, then $$\alpha^2+\beta^2$$ is equal to :

A
48
B
6
C
3
D
12
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12