Two parallel long current carrying wire separated by a distance $$2 r$$ are shown in the figure. The ratio of magnetic field at $$A$$ to the magnetic field produced at $$C$$ is $$\frac{x}{7}$$. The value of $$x$$ is __________.
A bus moving along a straight highway with speed of $$72 \mathrm{~km} / \mathrm{h}$$ is brought to halt within $$4 s$$ after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is ________ $$m$$.
A rod of length $$60 \mathrm{~cm}$$ rotates with a uniform angular velocity $$20 \mathrm{~rad} \mathrm{s}^{-1}$$ about its perpendicular bisector, in a uniform magnetic filed $$0.5 T$$. The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is _________ V.
The disintegration energy $$Q$$ for the nuclear fission of $${ }^{235} \mathrm{U} \rightarrow{ }^{140} \mathrm{Ce}+{ }^{94} \mathrm{Zr}+n$$ is _______ $$\mathrm{MeV}$$.
Given atomic masses of $${ }^{235} \mathrm{U}: 235.0439 u ;{ }^{140} \mathrm{Ce}: 139.9054 u, { }^{94} \mathrm{Zr}: 93.9063 u ; n: 1.0086 u$$, Value of $$c^2=931 \mathrm{~MeV} / \mathrm{u}$$.