The area (in sq. units) of the region $$S=\{z \in \mathbb{C}:|z-1| \leq 2 ;(z+\bar{z})+i(z-\bar{z}) \leq 2, \operatorname{lm}(z) \geq 0\}$$ is
If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is
Let three real numbers $$a, b, c$$ be in arithmetic progression and $$a+1, b, c+3$$ be in geometric progression. If $$a>10$$ and the arithmetic mean of $$a, b$$ and $$c$$ is 8, then the cube of the geometric mean of $$a, b$$ and $$c$$ is
Let a relation $$\mathrm{R}$$ on $$\mathrm{N} \times \mathbb{N}$$ be defined as: $$\left(x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$$ if and only if $$x_1 \leq x_2$$ or $$y_1 \leq y_2$$. Consider the two statements:
(I) $$\mathrm{R}$$ is reflexive but not symmetric.
(II) $$\mathrm{R}$$ is transitive
Then which one of the following is true?