1
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2+4)^2 d y+(2 x^3 y+8 x y-2) d x=0$$. If $$y(0)=0$$, then $$y(2)$$ is equal to

A
$$2 \pi$$
B
$$\frac{\pi}{8}$$
C
$$\frac{\pi}{16}$$
D
$$\frac{\pi}{32}$$
2
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :

$$\mathrm{X}$$ 0 2 4 6 8
$$\mathrm{P(X)}$$ $$a$$ $$2a$$ $$a+b$$ $$2b$$ $$3b$$

is $$\frac{46}{9}$$, then the variance of the distribution is

A
$$\frac{581}{81}$$
B
$$\frac{566}{81}$$
C
$$\frac{151}{27}$$
D
$$\frac{173}{27}$$
3
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$P Q$$ be a chord of the parabola $$y^2=12 x$$ and the midpoint of $$P Q$$ be at $$(4,1)$$. Then, which of the following point lies on the line passing through the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ ?

A
$$(3,-3)$$
B
$$\left(\frac{1}{2},-20\right)$$
C
$$(2,-9)$$
D
$$\left(\frac{3}{2},-16\right)$$
4
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{C}$$ be a circle with radius $$\sqrt{10}$$ units and centre at the origin. Let the line $$x+y=2$$ intersects the circle $$\mathrm{C}$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$. Let $$\mathrm{MN}$$ be a chord of $$\mathrm{C}$$ of length 2 unit and slope $$-1$$. Then, a distance (in units) between the chord PQ and the chord $$\mathrm{MN}$$ is

A
$$3-\sqrt{2}$$
B
$$2-\sqrt{3}$$
C
$$\sqrt{2}-1$$
D
$$\sqrt{2}+1$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12