Consider a triangle $$\mathrm{ABC}$$ having the vertices $$\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$$ and $$\mathrm{C}(\gamma, \delta)$$ and angles $$\angle A B C=\frac{\pi}{6}$$ and $$\angle B A C=\frac{2 \pi}{3}$$. If the points $$\mathrm{B}$$ and $$\mathrm{C}$$ lie on the line $$y=x+4$$, then $$\alpha^2+\gamma^2$$ is equal to _______.
In a tournament, a team plays 10 matches with probabilities of winning and losing each match as $$\frac{1}{3}$$ and $$\frac{2}{3}$$ respectively. Let $$x$$ be the number of matches that the team wins, and $y$ be the number of matches that team loses. If the probability $$\mathrm{P}(|x-y| \leq 2)$$ is $$p$$, then $$3^9 p$$ equals _________.
Consider the function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ defined by $$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$$. If the composition of $$f, \underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$$, then the value of $$\sqrt{3 \alpha+1}$$ is equal to _______.
Let $$y=y(x)$$ be the solution of the differential equation $$(x+y+2)^2 d x=d y, y(0)=-2$$. Let the maximum and minimum values of the function $$y=y(x)$$ in $$\left[0, \frac{\pi}{3}\right]$$ be $$\alpha$$ and $$\beta$$, respectively. If $$(3 \alpha+\pi)^2+\beta^2=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$$, then $$\gamma+\delta$$ equals _________.