Mercury is filled in a tube of radius $$2 \mathrm{~cm}$$ up to a height of $$30 \mathrm{~cm}$$. The force exerted by mercury on the bottom of the tube is _________ N.
(Given, atmospheric pressure $$=10^5 \mathrm{~Nm}^{-2}$$, density of mercury $$=1.36 \times 10^4 \mathrm{~kg} \mathrm{~m}^{-3}, \mathrm{~g}=10 \mathrm{~m} \mathrm{~s}^{-2}, \pi=\frac{22}{7})$$
A light ray is incident on a glass slab of thickness $$4 \sqrt{3} \mathrm{~cm}$$ and refractive index $$\sqrt{2}$$ The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is ______ $$\mathrm{cm}$$.
(Given $$\sin 15^{\circ}=0.25$$)
Two wires $$A$$ and $$B$$ are made up of the same material and have the same mass. Wire $$A$$ has radius of $$2.0 \mathrm{~mm}$$ and wire $$B$$ has radius of $$4.0 \mathrm{~mm}$$. The resistance of wire $$B$$ is $$2 \Omega$$. The resistance of wire $$A$$ is ________ $$\Omega$$.
The displacement of a particle executing SHM is given by $$x=10 \sin \left(w t+\frac{\pi}{3}\right) m$$. The time period of motion is $$3.14 \mathrm{~s}$$. The velocity of the particle at $$t=0$$ is _______ $$\mathrm{m} / \mathrm{s}$$.