1
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Given that the inverse trigonometric function assumes principal values only. Let $$x, y$$ be any two real numbers in $$[-1,1]$$ such that $$\cos ^{-1} x-\sin ^{-1} y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$$. Then, the minimum value of $$x^2+y^2+2 x y \sin \alpha$$ is

A
0
B
$$-$$1
C
$$\frac{1}{2}$$
D
$$\frac{-1}{2}$$
2
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For $$\lambda>0$$, let $$\theta$$ be the angle between the vectors $$\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. If the vectors $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ are mutually perpendicular, then the value of (14 cos $$\theta)^2$$ is equal to

A
25
B
50
C
20
D
40
3
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2+4)^2 d y+(2 x^3 y+8 x y-2) d x=0$$. If $$y(0)=0$$, then $$y(2)$$ is equal to

A
$$2 \pi$$
B
$$\frac{\pi}{8}$$
C
$$\frac{\pi}{16}$$
D
$$\frac{\pi}{32}$$
4
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the mean of the following probability distribution of a radam variable $$\mathrm{X}$$ :

$$\mathrm{X}$$ 0 2 4 6 8
$$\mathrm{P(X)}$$ $$a$$ $$2a$$ $$a+b$$ $$2b$$ $$3b$$

is $$\frac{46}{9}$$, then the variance of the distribution is

A
$$\frac{581}{81}$$
B
$$\frac{566}{81}$$
C
$$\frac{151}{27}$$
D
$$\frac{173}{27}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12