In Young's double slit experiment, light from two identical sources are superimposing on a screen. The path difference between the two lights reaching at a point on the screen is $$7 \lambda / 4$$. The ratio of intensity of fringe at this point with respect to the maximum intensity of the fringe is :
Given below are two statements:
Statement I : Most of the mass of the atom and all its positive charge are concentrated in a tiny nucleus and the electrons revolve around it, is Rutherford's model.
Statement II : An atom is a spherical cloud of positive charges with electrons embedded in it, is a special case of Rutherford's model.
In the light of the above statements, choose the most appropriate from the options given below
Two sources of light emit with a power of $$200 \mathrm{~W}$$. The ratio of number of photons of visible light emitted by each source having wavelengths $$300 \mathrm{~nm}$$ and $$500 \mathrm{~nm}$$ respectively, will be :
Two particles $$X$$ and $$Y$$ having equal charges are being accelerated through the same potential difference. Thereafter they enter normally in a region of uniform magnetic field and describes circular paths of radii $$R_1$$ and $$R_2$$ respectively. The mass ratio of $$X$$ and $$Y$$ is :