$$\text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 < x<1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }$$
If $$\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$$ are in an A.P. and $$\log _e \mathrm{a}-\log _e 2 \mathrm{~b}, \log _e 2 \mathrm{~b}-\log _e 3 \mathrm{c}, \log _e 3 \mathrm{c} -\log _e$$ a are also in an A.P, then $$a: b: c$$ is equal to
If $$\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2}$$ is the solution of the differential equation $$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$$ and $$y(1)=\frac{\pi}{3}$$, then $$\alpha^2$$ is equal to
An integer is chosen at random from the integers $$1,2,3, \ldots, 50$$. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is