Let $$P(\alpha, \beta)$$ be a point on the parabola $$y^2=4 x$$. If $$P$$ also lies on the chord of the parabola $$x^2=8 y$$ whose mid point is $$\left(1, \frac{5}{4}\right)$$, then $$(\alpha-28)(\beta-8)$$ is equal to _________.
Remainder when $$64^{32^{32}}$$ is divided by 9 is equal to ________.
Let $$f(x)=\sqrt{\lim _\limits{r \rightarrow x}\left\{\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right\}}$$ be differentiable in $$(-\infty, 0) \cup(0, \infty)$$ and $$f(1)=1$$. Then the value of ea, such that $$f(a)=0$$, is equal to _________.
If $$\int_\limits{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$$, where $$\alpha, \beta$$ and $$\gamma$$ are rational numbers, then $$3 \alpha+4 \beta-\gamma$$ is equal to _________.