Let for any three distinct consecutive terms $$a, b, c$$ of an A.P, the lines $$a x+b y+c=0$$ be concurrent at the point $$P$$ and $$Q(\alpha, \beta)$$ be a point such that the system of equations
$$\begin{aligned} & x+y+z=6, \\ & 2 x+5 y+\alpha z=\beta \text { and } \end{aligned}$$
$$x+2 y+3 z=4$$, has infinitely many solutions. Then $$(P Q)^2$$ is equal to _________.
Let $$P(\alpha, \beta)$$ be a point on the parabola $$y^2=4 x$$. If $$P$$ also lies on the chord of the parabola $$x^2=8 y$$ whose mid point is $$\left(1, \frac{5}{4}\right)$$, then $$(\alpha-28)(\beta-8)$$ is equal to _________.
Remainder when $$64^{32^{32}}$$ is divided by 9 is equal to ________.
Let $$f(x)=\sqrt{\lim _\limits{r \rightarrow x}\left\{\frac{2 r^2\left[(f(r))^2-f(x) f(r)\right]}{r^2-x^2}-r^3 e^{\frac{f(r)}{r}}\right\}}$$ be differentiable in $$(-\infty, 0) \cup(0, \infty)$$ and $$f(1)=1$$. Then the value of ea, such that $$f(a)=0$$, is equal to _________.