The sum of the solutions $$x \in \mathbb{R}$$ of the equation $$\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6$$ is
Let $$x=\frac{m}{n}$$ ($$m, n$$ are co-prime natural numbers) be a solution of the equation $$\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$$ and let $$\alpha, \beta(\alpha >\beta)$$ be the roots of the equation $$m x^2-n x-m+ n=0$$. Then the point $$(\alpha, \beta)$$ lies on the line
Let $$A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$$ and $$P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$$. The sum of the prime factors of $$\left|P^{-1} A P-2 I\right|$$ is equal to
Let O be the origin, and M and $$\mathrm{N}$$ be the points on the lines $$\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}$$ and $$\frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}$$ respectively such that $$\mathrm{MN}$$ is the shortest distance between the given lines. Then $$\overrightarrow{O M} \cdot \overrightarrow{O N}$$ is equal to _________.