An integer is chosen at random from the integers $$1,2,3, \ldots, 50$$. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is
Let $$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b} \text { and } \overrightarrow{O C}=\vec{b}$$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $$\mathrm{{{area\,of\,the\,quadrilateral\,OA\,BC} \over {area\,of\,S}}}$$ is equal to _________.
The function $$f(x)=2 x+3(x)^{\frac{2}{3}}, x \in \mathbb{R}$$, has
If each term of a geometric progression $$a_1, a_2, a_3, \ldots$$ with $$a_1=\frac{1}{8}$$ and $$a_2 \neq a_1$$, is the arithmetic mean of the next two terms and $$S_n=a_1+a_2+\ldots . .+a_n$$, then $$S_{20}-S_{18}$$ is equal to