1
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let the set of all $a \in \mathbf{R}$ such that the equation $\cos 2 x+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then pqr is equal to ____________.
Your input ____
2
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let for a differentiable function $f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right)$ is equal to ____________.
Your input ____
3
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let the area of the region $\left\{(x, y): x-2 y+4 \geqslant 0, x+2 y^2 \geqslant 0, x+4 y^2 \leq 8, y \geqslant 0\right\}$ be $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime numbers. Then $\mathrm{m}+\mathrm{n}$ is equal to _____________.
Your input ____
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], B=\left[B_1, B_2, B_3\right]$, where $B_1, B_2, B_3$ are column matrics, and

$$ \mathrm{AB}_1=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right], \mathrm{AB}_2=\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right], \quad \mathrm{AB}_3=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] $$

If $\alpha=|B|$ and $\beta$ is the sum of all the diagonal elements of $B$, then $\alpha^3+\beta^3$ is equal to ____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP