1
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
If the solution of the differential equation

$(2 x+3 y-2) \mathrm{d} x+(4 x+6 y-7) \mathrm{d} y=0, y(0)=3$, is

$\alpha x+\beta y+3 \log _e|2 x+3 y-\gamma|=6$, then $\alpha+2 \beta+3 \gamma$ is equal to ____________.
Your input ____
2
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}$. Then $f^{\prime}(10)$ is equal to ____________.
Your input ____
3
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let the set of all $a \in \mathbf{R}$ such that the equation $\cos 2 x+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then pqr is equal to ____________.
Your input ____
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let for a differentiable function $f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right)$ is equal to ____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP