1
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the shortest distance of the parabola $y^2=4 x$ from the centre of the circle $x^2+y^2-4 x-16 y+64=0$ is $\mathrm{d}$, then $\mathrm{d}^2$ is equal to :
A
16
B
24
C
20
D
36
2
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $(a, b)$ be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $\mathrm{I}_1=\int\limits_{\mathrm{a}}^{\mathrm{b}} x \sin \left(4 x-x^2\right) \mathrm{d} x, \mathrm{I}_2=\int\limits_{\mathrm{a}}^{\mathrm{b}} \sin \left(4 x-x^2\right) \mathrm{d} x$, then $36 \frac{\mathrm{I}_1}{\mathrm{I}_2}$ is equal to :
A
80
B
72
C
66
D
88
3
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $x=x(\mathrm{t})$ and $y=y(\mathrm{t})$ be solutions of the differential equations $\frac{\mathrm{d} x}{\mathrm{dt}}+\mathrm{a} x=0$ and $\frac{\mathrm{d} y}{\mathrm{dt}}+\mathrm{by}=0$ respectively, $\mathrm{a}, \mathrm{b} \in \mathbf{R}$. Given that $x(0)=2 ; y(0)=1$ and $3 y(1)=2 x(1)$, the value of $\mathrm{t}$, for which $x(\mathrm{t})=y(\mathrm{t})$, is :
A
$\log _{\frac{2}{3}} 2$
B
$\log _{\frac{4}{3}} 2$
C
$\log _4 3$
D
$\log _3 4$
4
JEE Main 2024 (Online) 27th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The distance, of the point $(7,-2,11)$ from the line

$\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3}$ along the line $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$, is :
A
12
B
18
C
21
D
14
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12