1
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}$. Then $f^{\prime}(10)$ is equal to ____________.
Your input ____
2
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let the set of all $a \in \mathbf{R}$ such that the equation $\cos 2 x+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then pqr is equal to ____________.
Your input ____
3
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let for a differentiable function $f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right)$ is equal to ____________.
Your input ____
4
JEE Main 2024 (Online) 27th January Morning Shift
Numerical
+4
-1
Change Language
Let the area of the region $\left\{(x, y): x-2 y+4 \geqslant 0, x+2 y^2 \geqslant 0, x+4 y^2 \leq 8, y \geqslant 0\right\}$ be $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime numbers. Then $\mathrm{m}+\mathrm{n}$ is equal to _____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12